Graphics
HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation
Human image animation involves generating videos from a character photo, allowing user control and unlocking the potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation. To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of real-world videos from the internet.
2082273791021571c410f41d565d0b45-Supplemental-Conference.pdf
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception? In Section 4.1, we briefly introduced how humans annotate the reconstructed images for different datasets. In the supplementary material, we have included a graphical user interface (GUI) that was utilized by the annotators. Figure 1 displays the GUI, where (A) and (B) were specifically designed for annotating different datasets. To minimize the influence of subjective bias, we use a relatively objective formulation: whether the reconstructed image can be correctly labeled.
DMesh: A Differentiable Mesh Representation Yang Zhou 2
We present a differentiable representation, DMesh, for general 3D triangular meshes. DMesh considers both the geometry and connectivity information of a mesh. In our design, we first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT), and select triangular faces on the tetrahedra to define the final mesh. We formulate probability of faces to exist on the actual surface in a differentiable manner based on the WDT. This enables DMesh to represent meshes of various topology in a differentiable way, and allows us to reconstruct the mesh under various observations, such as point clouds and multi-view images using gradient-based optimization.
Omnigrasp: Grasping Diverse Objects with Simulated Humanoids Zhengyi Luo 1,2 Sammy Christen 2,3 Alexander Winkler 2
We present a method for controlling a simulated humanoid to grasp an object and move it to follow an object's trajectory. Due to the challenges in controlling a humanoid with dexterous hands, prior methods often use a disembodied hand and only consider vertical lifts or short trajectories. This limited scope hampers their applicability for object manipulation required for animation and simulation. To close this gap, we learn a controller that can pick up a large number (>1200) of objects and carry them to follow randomly generated trajectories. Our key insight is to leverage a humanoid motion representation that provides human-like motor skills and significantly speeds up training.
Learning to See Physics via Visual De-animation
Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum
We introduce a paradigm for understanding physical scenes without human annotations. At the core of our system is a physical world representation that is first recovered by a perception module and then utilized by physics and graphics engines. During training, the perception module and the generative models learn by visual de-animation -- interpreting and reconstructing the visual information stream. During testing, the system first recovers the physical world state, and then uses the generative models for reasoning and future prediction. Even more so than forward simulation, inverting a physics or graphics engine is a computationally hard problem; we overcome this challenge by using a convolutional inversion network. Our system quickly recognizes the physical world state from appearance and motion cues, and has the flexibility to incorporate both differentiable and non-differentiable physics and graphics engines. We evaluate our system on both synthetic and real datasets involving multiple physical scenes, and demonstrate that our system performs well on both physical state estimation and reasoning problems. We further show that the knowledge learned on the synthetic dataset generalizes to constrained real images.
RenderNet: A deep convolutional network for differentiable rendering from 3D shapes
Thu H. Nguyen-Phuoc, Chuan Li, Stephen Balaban, Yongliang Yang
Traditional computer graphics rendering pipelines are designed for procedurally generating 2D images from 3D shapes with high performance. The nondifferentiability due to discrete operations (such as visibility computation) makes it hard to explicitly correlate rendering parameters and the resulting image, posing a significant challenge for inverse rendering tasks. Recent work on differentiable rendering achieves differentiability either by designing surrogate gradients for non-differentiable operations or via an approximate but differentiable renderer. These methods, however, are still limited when it comes to handling occlusion, and restricted to particular rendering effects. We present RenderNet, a differentiable rendering convolutional network with a novel projection unit that can render 2D images from 3D shapes. Spatial occlusion and shading calculation are automatically encoded in the network. Our experiments show that RenderNet can successfully learn to implement different shaders, and can be used in inverse rendering tasks to estimate shape, pose, lighting and texture from a single image.
Neural Gaffer: Relighting Any Object via Diffusion Yuan Li2
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive.